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Abstract

The problem of lateral vibration of a beam subjected to an eccentric compressive force and a
harmonically varying transverse concentrated moving force is analyzed within the framework of the
Bernoulli–Euler beam theory. The Lagrange equations are used to examine the free vibration
characteristics of an axially loaded beam and the dynamic response of a beam subjected to an eccentric
compressive force and a moving harmonic concentrated force. The constraint conditions of supports are
taken into account by using the Lagrange multipliers. In the study, trial function denoting the deflection of
the beam is expressed in a polynomial form. By using the Lagrange equations, the problem is reduced to the
solution of a system of algebraic equations. Results of numerical simulations are presented for various
combinations of the value of the eccentricity, the eccentric compressive force, excitation frequency and the
constant velocity of the transverse moving harmonic force. Convergence studies are made. The validity of
the obtained results is demonstrated by comparing them with exact solutions based on the Bernoulli–Euler
beam theory obtained for the special cases of the investigated problem.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Lateral vibration of beams under axial loading has been of practical interest in recent years. The
influences of axial loading on the vibration characteristics of beams have been well investigated.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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The earliest work on the effect of axial force on lateral vibration of beams was done by
Timoshenko and Young [1]. Fryba [2] presented in his book analytical solution, for vibration of a
simply supported beam subjected to an axial force and a moving force. Bokaian [3,4] investigated
the effect of the compressive and tensile axial forces on natural frequencies and mode shapes of a
uniform single-span beam for various end conditions. Virgin and Plaut [5] determined analytically
the steady-state linear response of uniform elastic beams subjected to a distributed, harmonically
varying transverse force. The transverse force varies harmonically in time and spatially is
distributed along the beam, and the static axial force may be tensile or compressive. Kukla [6]
analyzed the free vibration of axially loaded beams with concentrated masses and intermediate
elastic supports, using Green functions. In the case of a beam with N elastic supports and
concentrated masses, the frequency equation was expressed by means of an Nth order
determinant. A recent paper by Luo [7] analyzed the lateral vibration of an infinite uniform
Bernoulli–Euler beam under axial loads by setting up a model of infinite beam with a
harmonically varying transverse concentrated force at the centre of the beam. Nallim and Grossi
[8] presented a simple variational approach based on the use of the Rayleigh–Ritz method with
the characteristic orthogonal polynomial shape functions for the determination of free vibration
frequencies of beams with several complicating effects. Lee [9] utilized Hamilton’s principle to
solve the dynamic response of a beam with intermediate point constraints subjected to a moving
load by using the vibration modes of a simply supported beam as the assumed modes. Abu-Hilal
and Mohsen [10] studied the dynamic response of elastic homogenous isotropic beams with
different boundary conditions subjected to a constant force moving with accelerating, decelerating
and constant velocity types of motion. Zheng et al. [11] considered the dynamic response of the
continuous beams subjected to moving loads by using the modified beam vibration functions.
Dugush and Eisenberg [12] examined vibrations of non-uniform continuous beams under moving
loads by using both the modal analysis method and the direct integration method. Zhu and Law
[13] analyzed the dynamic response of a continuous beam under moving loads using Hamilton’s
principle and eigenpairs obtained by the Ritz method.
In order to use the cross section of beams effectively, pre-tensioning and post-tensioning are

used for long-span beams in civil engineering applications. When pre-tensioning or post-
tensioning is used, the tensile stresses of the beams are reduced or vanished completely, which are
desired situations in the design of long-span bridges. Although the present problem is of great
practical interest to engineers designing structural and mechanical systems such as prestressed
beams of viaducts of roadways, railways and bridges, it has not been dealt with as far as the
authors know.
In the present study, the problem is analyzed by using the Lagrange equations with the trial

function in polynomial form denoting the deflection of the beam for determining the dynamic
response of a beam subjected to an eccentric compressive force and a concentrated moving
harmonic force with constant axial speed. The eccentric compressive force can be resolved into a
force and a couple at the center of the cross section of the beam. The constraint conditions of the
supports are taken into account by using Lagrange multipliers. By using the Lagrange equations,
the problem is reduced to a system of algebraic equations, and they are solved by using the direct
time integration method of Newmark [14]. The convergence study is based on the numerical
values obtained for various numbers of polynomial terms. Results given in this paper may be
useful for further investigations in this field.
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2. Theory and formulations

Consider a simply supported beam of length L, modulus of elasticity E, moment of inertia I,
and mass of per unit length r. The beam is subjected to an eccentric compressive force and a
transverse concentrated moving harmonic force, as shown in Fig. 1. The constraint conditions are
satisfied by using Lagrange multipliers. When there is no concentrated moving harmonic load on
the beam at time t ¼ 0, the beam is at rest in a bent configuration under the eccentric compressive
load. In this study, total displacements, including the displacements of the beam at rest, are
considered. A harmonic force Q(t) is applied in the w-direction, moving from left to right with a
prescribed constant speed in the axial direction. The assumptions made in the following
formulation are that transverse deflections are small, so that the dynamical behavior of the beam
is governed by the Bernoulli–Euler beam theory. Moreover, all the transverse deflections occur in
the same plane, defined by the x and w axes. Origin of the x and w axes is chosen at the midpoint
of the total length of the beam, as shown in Fig. 1.
According to the Bernoulli–Euler beam theory, the elastic strain energy of the beam at any

instant due to bending is expressed as an integral in Cartesian coordinates:
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Fig. 1. (a) A simply supported beam subjected to an eccentric compressive force and a moving harmonic force,

(b) transferring the eccentric compressive force to the center of cross section of the beam as a compressive axial force

and a couple.
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where E, I(x) and w(x, t) are the Young’s modulus, the moment of inertia of the cross section of
the beam and the total displacement function of the beam.
Neglecting rotary inertia effects, the kinetic energy of the beam at any instant is

T ¼
1

2

Z L=2

�L=2
r

qw x; tð Þ

qt

� �2

dx, (2)

where r is the mass of the beam per unit length. The Kelvin–Voigt model for the material is used.
In this case, the dissipation function of the beam at any instant is

R ¼
1

2

Z L=2

�L=2
ri

q2 _w x; tð Þ

qx2

� �2

dx, (3)

ri ¼ g2E IðxÞ, (4)

where ri and g2 are the coefficient of internal damping of the viscoelastic beam and proportionality
constant of internal damping, respectively. By transferring the eccentric compressive force to the
gravity center of the cross section of the beam, an axial force and a couple are obtained, which are
shown in Fig. 1b. The potential of the external forces and couples at any instant can be written as
follows

V ¼ �Q tð Þw xQ tð Þ; t
� �

�
P

2

Z L=2

�L=2

qw x; tð Þ

qx

� �2

dxþM
qw xA; tð Þ

qx
�M

qw xB; tð Þ

qx
, (5a)

QðtÞ ¼ F sin Otð Þ, (5b)

M ¼ Pe, (5c)

where F is the amplitude of the moving harmonic force, O is the excitation frequency of the
moving harmonic force, P is the axial compressive force, e is the eccentricity of the eccentric
compressive force and xQ(t) is the location of the moving harmonic force at any instant and
expressed as

xQ tð Þ ¼ vt� L=2; �
L

2
pxQ tð Þp

L

2
; 0ptp

L

v
, (6)

where v is the velocity of the moving harmonic force along the axial direction. The expressions of
Eq. (5a) are calculated at any instant. In other words, they are not related with the work done
between time interval t ¼ 0 and any time t. In this sense, in the first term of Eq. (5a), Q(t) is the
magnitude of the force at any instant and w(xQ(t), t) is the displacement just under the load again
at the same instant. The functional of the problem is given below:

I ¼ T � ðU þ V Þ. (7)

It is known that some expressions satisfying geometrical boundary conditions are chosen for
w(x, t) and, by using the Lagrange equations, the natural boundary conditions are also satisfied.
Therefore, by using the Lagrange equations and by assuming the displacement function w(x, t) to
be representable by a series of admissible functions and adjusting the coefficients in the series to
satisfy the Lagrange equations, an approximate solution is found for the displacement function.
By applying the Lagrange equations, the trial function w(x, t) is approximated by space-dependent
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polynomial terms x0, x1, x2,y,xM�1, and time-dependent generalized displacement coordinates
am(t). Thus,

w x; tð Þ ¼
XM
m¼1

am tð Þxm�1, (8)

where w(x, t) is the dynamic response of the beam subjected to an eccentric compressive force and
a concentrated moving harmonic transverse force. The constraint conditions of the supports are
satisfied by using the Lagrange multipliers. The constraint conditions are

biw xSi; tð Þ ¼ 0; i ¼ 1; 2, (9)

where xSi denotes the location of the ith support. In Eq. (9), bi quantities are the Lagrange
multipliers and in the considered problem they are support reactions. The Lagrange multipliers
formulation of the considered problem requires us to construct the Lagrangian functional
as follows:

L ¼ I þ biw xSi; tð Þ; i ¼ 1; 2, (10)

which attains its stationary value at the solution (w(xSi, t), bi). The generalized damping force QDr

can be obtained from the dissipation function by differentiating R with respect to _ak

QDr
¼ �

qR

q _ak

; k ¼ 1; 2; 3; . . . ;M þ 2, (11)

where the dot above is the derivative with respect to time. Then, using the Lagrange equations

qL

qak

�
d

dt

qL

q _ak

þQDr
¼ 0; k ¼ 1; 2; 3; . . . ;M þ 2, (12)

and introducing

aMþi ¼ bi; i ¼ 1; 2 (13)

yields the following equation:

Aaþ B _aþ C €a ¼ D, (14)

where

Akm ¼

Z L=2

�L=2
E IðxÞ xk�1

� �00
xm�1
� �00

dx� P

Z L=2

�L=2
xk�1
� �0

xm�1
� �0

dx; k;m ¼ 1; 2; 3; . . . ;M;

Akm ¼ xk�1
Sm ; k ¼ 1; . . . ;M; m ¼M þ 1; M þ 2,

Akm ¼ xm�1
Sk ; k ¼M þ 1; M þ 2; m ¼ 1; . . . ;M,

Akm ¼ 0; k;m ¼M þ 1; M þ 2,
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Bkm ¼

Z L=2

�L=2
ri xk�1
� �00

xm�1
� �00

dx; k;m ¼ 1; 2; 3; . . . ;M,

Bkm ¼ 0; k;m ¼M þ 1; M þ 2,

Ckm ¼

Z L=2

�L=2
rxk�1xm�1 dx; k;m ¼ 1; 2; 3; . . . ;M;

Ckm ¼ 0; k;m ¼M þ 1; M þ 2,

Dk ¼ Qxk�1
Q �M xk�1

A

� �0
þM xk�1

B

� �0
; k ¼ 1; 2; 3; . . . ;M,

Dk ¼ 0; k ¼M þ 1; M þ 2, ð15Þ

where (xk)0, (xk)00 are the first and the second derivatives of xk. A, B, C are the matrices that do not
depend on time, but D depends on time; namely, xk

Q depends on time.
For free vibration analysis, the time-dependent generalized displacement coordinates can be

expressed as follows:

am tð Þ ¼ āme
iot. (16)

By substituting Eq. (16) into Eq. (14), when the damping matrix of the beam B and the external
forces matrix D are taken as zero in Eq. (14), this situation results in a set of linear homogeneous
equations that can be expressed in the following matrix form:

Aā� o2Cā ¼ 0, (17)

where o is the natural frequency of the beam. By using the direct time integration method of
Newmark [14], Eq. (14) is solved and, am, _am, €am and bi coefficients are obtained for any instant t
between 0ptpL=v. Then, the displacements, velocities and accelerations at the considered point
and instant can be determined by using Eq. (8).
3. Numerical results

The dynamic response of a simply supported beam subjected to an eccentric compressive force
and a concentrated moving harmonic transverse force is calculated numerically. The total length
of the beam is L ¼ 20m, mass of the beam per unit length is r ¼ 1000kg=m, inertia moment of
the cross section is I ¼ 0:08824m4, the Young’s modulus is E ¼ 34,000MPa (EI ¼ 3� 109 Nm2)
and magnitude of the concentrated moving harmonic force is F ¼ 100kN. The numerical
integration is performed by using Gaussian quadrature. In the following figures, wðxQðtÞ; tÞ is the
deflection under the moving harmonic force. Damping ratio is considered in the form given in
Ref. [10] as follows:

x ¼
g1 þ g2o

2
k

2ok

. (18)

In all the calculations, the value of x is taken constant as 0.05. In Eq. (18), g1 is the proportionality
constant of the external damping, g2 is the proportionality constant of the internal damping, and
ok is the natural circular frequency of the kth mode, respectively. It is known that external
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damping is very small with respect to internal damping. Therefore, external damping is ignored in
this study. In the case of x ¼ 0:05, by using Eqs. (4) and (18), the damping coefficient ri is
obtained.
As far as the authors know, there are no existing results for beams subjected to eccentric

compressive forces and moving harmonic transverse forces. Therefore, a short investigation of
free vibration of the considered simply supported beam subjected to an axial force is done for
comparing the obtained results with the existing exact results of free vibration characteristics of
the simply supported beam subjected to an axial force. The natural frequencies of the beam are
determined by calculating the eigenvalues o of the frequency by Eq. (17). In Table 1, the
calculated natural frequencies are compared with those of Timoshenko and Young [1] presented

by the formula oi ¼ ai2p2=l2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Pl2=i2EIp2
q

(where a ¼
ffiffiffiffiffiffiffiffiffiffiffi
EI=r

p
) and Fyrba [2]. The

convergence is tested by taking the number of terms ðM þ 2Þ ¼ 12; 14; 16; 18. It is seen that the
present converged values show excellent agreement with those of Timoshenko and Young [1], and
Fyrba [2]. Also, it is seen from Table 1 that compression tends to reduce the free vibration
frequencies while tension tends to increase them, as was observed in Refs. [1–5].
It is observed from Table 1 that the natural frequencies decrease as the number of the

polynomial terms increase: It means that the convergence is from above. By increasing the number
of the polynomial terms, the exact value can be approached from above. It should be remembered
that energy methods always overestimate the fundamental frequency; so with more refined
Table 1

Convergence study of natural frequencies oi of the simply supported beam and comparison of the obtained results with

the existing exact results for the special case of the problem

Axial force (kN) Determinant size o1 o2 o3 o4 o5

P ¼ 0 10 42.7362 170.9466 384.7235 684.7015 1155.6048

12 42.7362 170.9466 384.6307 683.7969 1073.2305

14 42.7362 170.9466 384.6295 683.7860 1068.5211

16 42.7362 170.9466 384.6295 683.7860 1068.4161

P ¼ 1� 103 10 42.4468 170.6573 384.4354 684.4134 1155.3253

12 42.4468 170.6573 384.3414 683.5076 1072.9425

14 42.4468 170.6573 384.3414 683.4979 1068.2318

16 42.4468 170.6573 384.3414 683.4979 1068.1268

P ¼ �1� 103 10 43.0242 171.2347 385.0123 684.9901 1155.8836

12 43.0242 171.2347 384.9183 684.0855 1073.5186

14 43.0242 171.2347 384.9183 684.0745 1068.8092

16 43.0242 171.2347 384.9183 684.0745 1068.7042

Timoshenko and Young [1] P ¼ 0 42.7366 170.9465 384.6297 683.7862 1068.4160

P ¼ 1� 103 42.4469 170.6576 384.3409 683.4975 1068.1273

P ¼ �1� 103 43.0243 171.2349 384.9183 684.0748 1068.7046

Fyrba [2] P ¼ 0 42.7366 170.9465 384.6297 683.7862 1068.4160

P ¼ 1� 103 42.4469 170.6576 384.3409 683.4975 1068.1273

P ¼ �1� 103 43.0243 171.2349 384.9183 684.0748 1068.7046
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analyses, the exact value can be approached from above. Convergence study indicates that the
calculated values are converged to within three significant figures on the right-hand side of the
decimal point.
In Ref. [8], dimensionless frequency coefficients li for the first five modes are calculated for the

simply supported beam which is subjected to an axial tensile force. In addition, dimensionless
axial force coefficient S is also defined for the free vibration analysis. In Ref. [8], the dimensionless
frequency and axial force coefficients li and S are defined as li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrA=EIÞ

p
oiL

2 and
S ¼ sL2=EI , where r, A and s are mass density, cross-sectional area and the axial tensile force,
respectively. The other parameters are already defined in the present study. In Ref. [8], the
dimensionless frequency coefficients li are obtained in tabular form for S ¼ 5; 10; 20.
In order to compare the obtained results with the above-mentioned results of Ref. [8], the

parameters P, EI and L are selected conveniently for obtaining the values of S as 5, 10, 20, which
were given in Ref. [8]. For this purpose, the axial tensile force P is taken as 3.75� 104, 7.5� 104,
15� 104 kN, the bending rigidity EI is taken as EI ¼ 3� 109 Nm2, the span L of the beam is
taken as L ¼ 20m. Then, the natural frequencies are obtained by using Eq. (17). These natural
frequencies are substituted into the dimensionless frequency coefficient li defined in Ref. [8]. The
obtained dimensionless frequency coefficients are compared with those of Ref. [8] in Table 2.
Another example for comparing the obtained results with the exact solution, which is the

special case of the present study, is a beam subjected to only moving harmonic force with constant
velocity investigated by Timoshenko and Young [1]. The deflections of the beam are presented by
the following formula:

y ¼
PL3

EIp4
X1
i¼1

sin
ipx

l

sin ipv
l
þ o

� �
t

i4 � ðbþ iaÞ2
þ

sin ipv
l
� o

� �
t

i4 � ðb� iaÞ2
�

a
i

sin i2p2at
l2

�i2a2 þ ði2 � bÞ2
þ

sin i2p2at
l2

�i2a2 þ ði2 þ bÞ2

 !( )
;

where a ¼ vl=pa (a ¼
ffiffiffiffiffiffiffiffiffiffiffi
EI=r

p
) is the ratio of the period t ¼ 2l2=pa of the fundamental type of

vibration of the beam to twice the time t1 ¼ l=v, it takes the force P to pass over the beam,
b ¼ t=t2 is the ratio of the period of the fundamental type of vibration of the beam to the period
t2 ¼ 2p=o of the harmonic force. However, in the above formula, the harmonic force was taken
Table 2

Comparison of the obtained dimensionless frequency coefficients li of the simply supported beam with the existing

results of Ref. [8]

li S ¼ 5 S ¼ 10 S ¼ 20

l1 [8] 12.114335 14.003754 17.169775

Present result 12.114334 14.003763 17.169723

l2 [8] 41.903908 44.196489 48.457340

Present result 41.903886 44.196481 48.457326

l3 [8] 91.292214 93.693136 98.319199

Present result 91.292190 93.693113 98.319196

l4 [8] 160.39407 162.83758 167.61621

Present result 160.39405 162.83677 167.61548

l5 [8] 249.23288 252.27915 256.54422

Present result 249.22752 251.71427 256.54520
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as QðtÞ ¼ P cos ot, where o is the angular velocity of the driving wheel, and, the damping of the
beam was neglected. Therefore, in order to compare the present results with the above-mentioned
exact solution, the harmonic force is taken as QðtÞ ¼ F cos ðOtÞ instead of the expression in
Eq. (5b), and the damping of the beam is neglected.
From here on, in the calculation of the results of the present study, 14 terms of the polynomial

series are used, namely the size of the determinant is 16� 16.
As seen from Fig. 2, the obtained results are in excellent agreement with the results of

Timoshenko and Young [1] in the case of moving force (O ¼ 0), and in the case of moving
harmonic force (O ¼ 40 rad/s). In Fig. 2, it is almost imposible to realize the difference
between the curves of Timoshenko and Young [1], and the present study. They are very close to
each other.
In Fig. 3, the effect of axial compressive force on the lateral vibrations of a beam under the

moving harmonic force is analyzed for various values of excitation frequencies O at constant
speed v ¼ 20m=s. It is seen from this figure that the effect of axial compressive force is very small
and can be ignored. Moreover, as seen in Fig. 3c, for O ¼ 40 rad/s, which is very close to the first
eigenvalue (o1 ¼ 42.7366 rad/s) of the considered beam, the response of the beam is very large
relative to the other cases and this situation resembles the resonant case. After the resonant
frequency of the external harmonic force, the displacements decrease with increase in the
frequency of the external harmonic force in the considered frequency range.
Figs. 4 and 5 show the effect of the eccentric compressive force for various compressive forces

and excitation frequency O at constant speed v ¼ 20m for e ¼ 0:25 and 0.5m, respectively. In
contrast to the axial force, the eccentric compressive force has a strong effect on the response of
the beam as seen in Figs. 4 and 5, which show almost the same characteristics. This is because
of the end moments, which are due to the eccentricity of the compressive force. The eccentricity of
the compressive force affects the behavior of the beam significantly. The displacements given in
Figs. 4, 5 and 7–12 can be obtained by superposing the displacements caused by the end moments
shown in Fig. 1b and the displacements caused by the axial load P and moving harmonic load
Q(t) shown in Fig. 1b. When P ¼ 0, this situation is the same with the moving harmonic force
situation without compressive force. This case is shown in Figs. 4 and 5 with solid lines. With
increase in the compressive force, namely increase in the end moments due to the eccentricity of
the compressive force, positive deflections decrease and the absolute values of negative deflections
increase. The absolute values of deflections increase remarkably with increase in the compressive
force. For the values of O ¼ 60, 80 rad/s and after P ¼ 1000kN, all displacements of the beam
occur in the negative region and they reach very high values with increase in the value of axial
force P. This is a desirable situation in the prestressed concrete beams of viaducts and bridges.
Meanwhile, it is important to note that the effect of the negative displacement, which means
tension stresses at the upper side of neutral axis of the beam, should be taken into account in the
design of such systems.
The deflections increase with increase in the force frequency O until the first characteristic

frequency value of the beam. In the values of force frequency O greater than the characteristic
frequency value of the beam o1, the deflections become small with increase in O. The above-
mentioned comments are valid for Fig. 5 for which e is taken as 0.5m. It can be noted for this case
that the absolute values of the negative displacements become approximately two times larger
than the deflection values of Fig. 4.
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Fig. 2. Deflections under the moving harmonic force for constant velocity v ¼ 15m=s for the excitation frequencies: (a)

O ¼ 0, (b) O ¼ 40 rad/s, (——) Ref. [1], (– – – –) present study.
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Figs. 6–8 show the effect of the velocity of the moving harmonic force on the deflections of the
beam for various values of the excitation frequency O and velocities v ¼ 10; 20; 40; 60; 80m=s at
constant eccentric compressive force P ¼ 1500kN for e ¼ 0; 0:25; 0:5m, respectively. It can be
clearly seen from Figs. 6–8 that, velocity has an important effect on the response of the beam. It is
seen from Fig. 6a that, when O ¼ 0, the maximum deflection is obtained for v ¼ 80m=s. It can be
concluded from Figs. 6–8 that, when the value of the force frequency O is close to the first
eigenvalue of the beam, the lower values of the velocity cause greater positive values of deflections
and greater absolute values of negative deflections than those of the higher values of velocity.
Otherwise, higher values of velocities give higher absolute values of deflections than those of the
lower values of velocity. Also, the cycles of the deflections in the considered beam length decrease
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Fig. 3. Deflections under the moving harmonic force for various compressive forces P for e ¼ 0, v ¼ 20m=s for (a)

O ¼ 0, (b) O ¼ 20 rad/s, (c) O ¼ 40 rad/s, (d) O ¼ 60 rad/s, (e) O ¼ 80 rad/s, (——) P ¼ 0, (– – –) P ¼ 1000 kN,

( � � � � � � � ) P ¼ 1500 kN, (– � – � –) P ¼ 2000 kN.

T. Kocatürk, M. S- ims-ek / Journal of Sound and Vibration 291 (2006) 302–322312
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Fig. 4. Deflections under the moving harmonic force for various compressive forces P for e ¼ 0:25m, v ¼ 20m=s for (a)
O ¼ 0, (b) O ¼ 20 rad/s, (c) O ¼ 40 rad/s, (d) O ¼ 60 rad/s, (e) O ¼ 80 rad/s, (——) P ¼ 0, (– – –) P ¼ 1000 kN,

( � � � � � � � ) P ¼ 1500 kN, (– � – � –) P ¼ 2000 kN.

T. Kocatürk, M. S- ims-ek / Journal of Sound and Vibration 291 (2006) 302–322 313
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Fig. 5. Deflections under the moving harmonic force for various compressive forces P for e ¼ 0:5m, v ¼ 20m=s for (a)
O ¼ 0, (b) O ¼ 20 rad/s, (c) O ¼ 40 rad/s, (d) O ¼ 60 rad/s, (e) O ¼ 80 rad/s, (——) P ¼ 0, (– – –) P ¼ 1000 kN,

( � � � � � � � ) P ¼ 1500 kN, (– � – � –) P ¼ 2000 kN.
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Fig. 6. Deflections under the moving harmonic force for various velocities v for e ¼ 0, P ¼ 1500 kN for (a) O ¼ 0, (b)

O ¼ 20 rad/s, (c) O ¼ 40 rad/s, (d) O ¼ 60 rad/s, (e) O ¼ 80 rad/s, (——) v ¼ 10m/s, (– – –) v ¼ 20m/s, ( � � � � � � � )

v ¼ 40m/s, (– � – � –) v ¼ 60m/s, ( ) v ¼ 80m/s.
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Fig. 7. Deflections under the moving harmonic force for various velocities v for e ¼ 0:25m, P ¼ 1500kN for (a) O ¼ 0,

(b) O ¼ 20 rad/s, (c) O ¼ 40 rad/s, (d) O ¼ 60 rad/s, (e) O ¼ 80 rad/s, (——) v ¼ 10m/s, (– – –) v ¼ 20m/s, ( � � � � � � � )

v ¼ 40m/s, (– � – � –) v ¼ 60m/s, ( ) v ¼ 80m/s.
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Fig. 8. Deflections under the moving harmonic force for various velocities v for e ¼ 0:5m, P ¼ 1500kN for (a) O ¼ 0,

(b) O ¼ 20 rad/s, (c) O ¼ 40 rad/s, (d) O ¼ 60 rad/s, (e) O ¼ 80 rad/s, (——) v ¼ 10m/s, (– – –) v ¼ 20m/s, ( � � � � � � � )

v ¼ 40m/s, (– � – � –) v ¼ 60m/s, ( ) v ¼ 80m/s.
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Fig. 9. Deflections under the moving harmonic force for various frequencies O for v ¼ 10m=s, P ¼ 1500kN for

(a) e ¼ 0, (b) e ¼ 0:25m, (c) e ¼ 0:5m, (– – –) O ¼ 0, ( � � � � � � � ) O ¼ 20 rad/s, (——) O ¼ 40 rad/s, (– � – � –)

O ¼ 80 rad/s.
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with increase in the velocity of the moving force as an expected situation. The reason for this
situation can be explained as follows: As the values of the velocity increase, the acting time of the
force on the beam becomes shorter. Therefore, the number of cycles of the moving harmonic force
in the high values of the velocity is smaller than the number of cycles of the moving harmonic
force in the low values of velocity for the same force frequency O. By comparing the deflections of
Figs. 7 and 8, it is seen that the absolute values of the negative displacements of Fig. 8 become
approximately two times larger than the deflection values of Fig. 7, which was also mentioned
previously for Figs. 4 and 5.
Figs. 9–12 show the effect of the frequency of the moving harmonic force on the deflections of

the beam for various values of the eccentricity of the compressive eccentric force and excitation
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Fig. 10. Deflections under the moving harmonic force for various frequencies O for v ¼ 20m=s, P ¼ 1500 kN for

(a) e ¼ 0, (b) e ¼ 0:25m, (c) e ¼ 0:5m, (– – –) O ¼ 0, ( � � � � � � � ) O ¼ 20 rad/s, (——) O ¼ 40 rad/s, (– � – � –)

O ¼ 80 rad/s.
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frequencies O ¼ 0; 20; 40; 80 rad=s at constant eccentric compressive force P ¼ 1500kN for
v ¼ 10; 20; 40; 80m=s, respectively. Figs. 9 and 10 show that excitation frequency of the moving
harmonic force plays an important role in the deflections of the beam in the low velocities, as it
was explained before. It was mentioned before that increase in the force frequency O until the first
characteristic value of the beam causes increase in the deflections of the beam. If the excitation
frequency is greater than the first eigenvalue of the beam, increase in the frequency causes decrease
in the maximum absolute values of deflections of the beam. Figs. 9 and 10 also show that increase
in the eccentricity causes decrease in the values of the positive deflections and increase in the
absolute values of negative deflections, which was mentioned before while commenting on Figs. 4
and 5.
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Fig. 11. Deflections under the moving harmonic force for various frequencies O for v ¼ 40m=s, P ¼ 1500 kN for

(a) e ¼ 0, (b) e ¼ 0:25m, (c) e ¼ 0:5m, (– – –) O ¼ 0, ( � � � � � � � ) O ¼ 20 rad/s, (——) O ¼ 40 rad/s, (– � – � –)

O ¼ 80 rad/s.
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4. Conclusions

Dynamic deflections of a simply supported beam subjected to an eccentric compressive force
and a moving harmonic force with various constant velocities have been investigated. The
obtained natural frequencies of the simply supported beam subjected to an axial force are
compared with the exact results. To use the Lagrange equations with the trial function in the
polynomial form and to satisfy the constraint conditions by use of the Lagrange multipliers is a
very good way of studying the dynamic behavior of beams. Numerical calculations have been
conducted to clarify the effects of the three important parameters: effect of the eccentric
compressive force, axial velocity of the moving harmonic force and the excitation frequency of the
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Fig. 12. Deflections under the moving harmonic force for various frequencies O for v ¼ 80m=s, P ¼ 1500 kN for

(a) e ¼ 0, (b) e ¼ 0:25m, (c) e ¼ 0:5m, (– – –) O ¼ 0, ( � � � � � � � ) O ¼ 20 rad/s, (——) O ¼ 40 rad/s, (– � – � –)

O ¼ 80 rad/s.
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moving force for the constant damping ratio z ¼ 0:05. It is observed from the investigations that
eccentric compressive force, axial velocity and frequency of the moving harmonic force have a
very important influence on deflections of the beam.
The main purpose of the study is to investigate the influence of eccentric compressive force on

deflections of prestressed beams. It is shown that the eccentricity of compressive force plays an
important role in the responses of prestressed beams under moving harmonic forces.
All of the obtained results are very accurate and may be useful for design purposes and a better

understanding of the behavior of the structural systems such as prestressed beams of viaducts of
roadways and railways, and also bridges under moving harmonic loads.
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